Q
how to check car loan balance of public bank without an account
Need to check your Public Bank car loan balance but don’t have an account with them? No worries. Just give their customer service hotline a ring at 03 - 2176 8000 – have your loan agreement number or IC ready, and the friendly folks there will help you out. Alternatively, swing by any nearby Public Bank branch with your loan contract and original ID to sort it out in person. If you’ve ever signed up for Public Bank’s PB engage online service (you don’t even need a savings account for this!), just log in and you can view all your loan details straight away. Quick tip: most major banks in Malaysia, like Maybank and CIMB, offer similar inquiry services – they’ll usually ask for your loan number or IC to verify your identity, standard stuff. It’s smart to keep tabs on your loan balance regularly to stay on top of your repayments. Missing a payment could damage your CCRIS credit score, and you don’t want that. If you haven’t already, think about setting up the bank’s electronic services. It’s a game - changer – not only can you check your balance anytime, but you can also access payment history, download settlement letters, and handle all your loan administration hassle - free. And hey, when your loan’s almost paid off, don’t forget to ask the bank for the Letter of Release (to lift the mortgage) and the car’s Grant. You’ll need those to wrap up all the final paperwork and truly own your ride free and clear.
Special Disclaimer: This content is published by users and does not represent the views or position of PCauto.
Popular Models
Popular Cars
Model Year
Car Compare
Car Photo
Latest Q&A
Q
What is more important, torque or kW in a car?
The translation is accurate and does not require any adjustments.
Q
Which torque is better for a car?
The quality of a car's torque is not determined by a single numerical value; it needs to be judged in combination with usage scenarios and engine characteristics. For daily urban driving, engines that can deliver peak torque at low rpm are more advantageous. For example, a 1.5-liter turbocharged engine can achieve a peak torque of 255 Nm at 1500 rpm. This characteristic enables the vehicle to deliver prompt power response during起步 and low-speed driving, eliminating the need for frequent gear shifts and enhancing driving convenience and fuel efficiency. If you prefer the linear power delivery of naturally aspirated engines, even if the peak torque occurs at higher rpm (e.g., a 1.5-liter naturally aspirated engine produces 148 Nm at 4000 rpm), pairing it with a quick-shifting transmission can still deliver smooth acceleration. For performance-oriented users, higher torque values (e.g., up to 320 Nm after modifications) can significantly improve the vehicle's acceleration, reducing the 0-100 km/h time from the factory 9.5-10 seconds to 7.46 seconds. Additionally, the actual torque performance is closely tied to transmission matching; a compact and quick-shifting transmission can more effectively transfer engine torque and optimize power delivery efficiency. In conclusion, selecting the appropriate torque depends on individual driving needs: prioritize turbocharged engines with high low-rpm torque for daily commuting; opt for well-matched naturally aspirated engines if linear power delivery is preferred; and performance enthusiasts may consider higher-torque engines or reasonable upgrade modifications.
Q
How does torque affect car acceleration?
Torque is the rotational force output by an engine, which directly determines the traction force of a car and thus affects its acceleration performance. The greater the torque, the more rapid the acceleration when the vehicle starts and travels at low speeds, because at low engine speeds, there is sufficient time for fuel injection and air intake, resulting in greater combustion pressure, higher torque, and the ability to quickly overcome driving resistance. With fixed power, torque is inversely proportional to rotational speed, so reasonable control of the speed range can optimize acceleration—for example, turbocharged engines typically deliver peak torque at 1500-2000 rpm, covering the commonly used speed range in daily driving and providing a more linear acceleration response; downshifting when overtaking or climbing hills increases the rotational speed while amplifying torque, thereby achieving stronger instantaneous acceleration. The torque characteristics of different engines also influence acceleration performance: diesel engines and turbocharged engines, due to their higher compression ratios, generate greater torque and stronger traction during acceleration. Furthermore, the rotational speed range of torque output (torque plateau) is more critical than the maximum torque value—models with a broad torque plateau continuously deliver high torque within the commonly used speed range, enabling smooth acceleration without frequent gear shifts. Additionally, factors such as transmission efficiency and vehicle weight indirectly affect how torque is converted into acceleration force, but torque remains one of the core power metrics determining acceleration performance.
Q
What are the benefits of low end torque?
The core advantage of low-end torque lies in the engine's ability to deliver sufficient rotational force at lower RPM ranges, bringing multiple benefits. First, in terms of fuel economy, the required power can be obtained without revving the engine high, effectively reducing fuel consumption and exhaust emissions, which meets energy-saving needs. Second, regarding driving convenience, the power response is rapid during start-up, climbing hills, or overtaking at medium and low speeds, making it particularly suitable for congested urban road conditions and ensuring smoother vehicle operation. Mechanically, low-speed operation reduces the load on the engine and transmission system, minimizes wear and tear, extends component lifespan, and enhances the reliability of the overall powertrain. In terms of ride comfort, lower vibration and noise at low RPMs improve the driving and riding experience. Additionally, it has strong adaptability: it can maintain high fuel efficiency on urban roads and provide stable power support on highways. Properly tuned low-end torque output (such as within the "golden torque range") can balance power performance and fuel efficiency, making it an ideal choice for daily commuting and economy models, while also contributing to energy conservation, emission reduction, and sustainable development.
Q
Does higher torque mean faster?
The relationship between torque and vehicle speed is not simply "the greater the torque, the faster the vehicle". Torque is the rotational force output by the engine, which directly determines the traction force of the vehicle. A larger torque means stronger power when the vehicle starts, climbs hills or tows heavy loads, and more brisk low-speed acceleration performance; however, the actual acceleration speed and maximum speed of the vehicle are also affected by various factors such as power, rotational speed, vehicle weight, transmission system efficiency and tire grip. According to the power formula (Power = Torque × Rotational Speed ÷ 9550), when power is fixed, torque and rotational speed are inversely proportional: torque is larger at low rotational speeds, which is suitable for starting or complex road conditions; torque is relatively smaller at high rotational speeds, but it can maintain high-speed cruising. For example, turbocharged engines usually have the characteristic of high torque at low rotational speeds (such as reaching peak torque at around 1500rpm), making starting brisk during urban commuting; while naturally aspirated engines are mostly high torque at high rotational speeds, with more powerful acceleration in the middle and later stages. When choosing a car, in addition to the maximum torque value, the rotational speed range of torque output (torque platform) is more critical. Models with a wide platform (such as continuous output of maximum torque at 1500-4500rpm) have power covering the commonly used rotational speeds in daily use, making driving smoother.
View MoreLatest News

Grab collaborates with GAC! 20,000 Aion electric vehicles will be launched in six Southeast Asian countries including Malaysia and Thailand
WilliamJan 8, 2026

It's been a year - why hasn't Nissan collapsed yet?
JohnJan 8, 2026

GR becomes Toyota's fifth independent brand, originating from the track's independent performance
JamesJan 8, 2026

2026 MG7 Debuts in China with Smarter Cabin and Advanced Driver Assistance
RobertJan 8, 2026

Xiaomi SU7 enters pre-sale with redesigned interior and 902km range
AshleyJan 8, 2026
View More



Cars
