Q

how much is mercedes c200 in malaysia

In Malaysia right now, the Mercedes-Benz C200 is priced roughly between RM250,000 and RM300,000. The exact figure hinges on the trim level, optional extras, and any dealer promotions going on. Your best bet is to hit up your local authorized Mercedes dealer for the latest quotes. As the entry point to the C-Class lineup, the C200 packs a 1.5-liter turbocharged engine paired with a 48V mild hybrid system, churning out 156 horsepower. It strikes a nice balance between fuel efficiency and driving dynamics, making it a solid pick for folks who want that premium badge without skimping on practicality. Over in the Malaysian market, the C200’s main rivals are the BMW 3 Series and Audi A4. These contenders also come loaded with tech and driver-assistance features, so it really boils down to personal taste and budget when deciding. Don’t forget to factor in insurance, road tax, and maintenance costs when you’re budgeting. Mercedes’ official warranty and service packages should take some of the hassle out of ownership, though.
Special Disclaimer: This content is published by users and does not represent the views or position of PCauto.

Related Q&A

Q
What is the most sold Mercedes in 2024?
The best-selling Mercedes-Benz model in Malaysia for 2024 is the C-Class. This car has won over local consumers with its exceptional luxury feel, advanced tech features, and well-rounded performance. The C 200 and C 300 variants, in particular, are big hits among business professionals and young families. Under the hood, the C-Class packs efficient turbocharged engines, and inside, you'll find the latest MBUX infotainment system, delivering a top-notch driving experience and smart connectivity. Its elegant design and strong brand value only add to its market appeal. The C-Class has long been a front-runner in Malaysia's luxury car segment, so it's no surprise it's keeping that momentum going in 2024. Mercedes has also rolled out various financing options and after-sales service packages in Malaysia, making ownership more accessible—another reason behind the C-Class's rising sales. For Malaysian consumers eyeing a luxury sedan, the Mercedes-Benz C-Class is definitely one to watch. It not only embodies the essence of the Mercedes brand but also showcases the perfect blend of German engineering and local needs.
Q
What is the best selling Mercedes in 2024?
The best-selling Mercedes-Benz model in the Malaysian market for 2024 is expected to be the C-Class. This model continues to be favored by consumers for its balanced performance, luxurious interior, and configurations tailored to local needs. It's particularly well-suited to Malaysia's urban driving environment, thanks to its efficient 1.5-liter turbocharged engine paired with a 48V mild hybrid system, which strikes a good balance between power and fuel economy. Additionally, the Mercedes-Benz GLC is performing strongly in the SUV segment, with its spacious interior and advanced driver assistance systems appealing to family users. Mercedes-Benz's success in Malaysia is partly due to its Complete Knock-Down (CKD) local assembly strategy, which has reduced prices and enhanced competitiveness. Meanwhile, the brand continues to introduce the latest technologies like the MBUX infotainment system, enhancing the user experience. Notably, Malaysian consumers' preference for luxury vehicles is gradually shifting from traditional sedans to SUVs, but Mercedes-Benz has catered to diverse needs through its varied product lineup, solidifying its leading market position.
  • Popular Cars

  • Model Year

  • Car Compare

  • Car Photo

Pros

Stylish exterior design with high recognition
Luxurious interior crafted from quality materials
Abundant configurations for safety and comfort
Strong brand influence and high reputation
Smooth power output and sufficient acceleration
Precise steering and well-tuned suspension system
Excellent seat comfort for long drives
Effective noise insulation for a quiet cabin

Cons

High costs for post-purchase maintenance
Lower resale value compared to some Japanese brands
Tight legroom in the rear for passengers
Some models have relatively high fuel consumption
Limited luggage space for longer trips
Assembly quality issues like door and brake noises

Latest Q&A

Q
Does more RPM mean more torque?
The relationship between engine speed (RPM) and torque is not a simple linear proportionality, but rather an inverse relationship under the premise of constant power. At low engine speeds, due to the extended fuel injection and intake duration, the combustion pressure inside the cylinders increases, resulting in higher torque output, which is suitable for scenarios requiring strong traction such as vehicle launch, hill climbing, or heavy loads. Conversely, torque decreases at high speeds, but power may increase to support high-speed driving. This characteristic stems from the physical formula "Power = Torque × Speed × Constant." Therefore, different vehicle models are calibrated for torque curves based on their intended purposes. For example, diesel engines or turbocharged engines typically emphasize high torque at low speeds, while high-performance vehicles prioritize power output at high speeds. In daily driving, rationally utilizing transmission gear ratios to match speed and torque (such as using first gear for high-torque hill climbing and higher gears for low-RPM cruising) can optimize fuel economy and dynamic performance.
Q
What is the maximum torque a human can apply?
The maximum torque that a human can apply with one hand typically ranges from 60 to 120 Newton-meters, with the specific value depending on individual strength, force application posture, and tool usage. When an average adult uses a standard wrench, a grip force of 200 Newtons can generate approximately 100 Newton-meters of torque when calculated with a 0.5-meter lever arm. However, due to muscle efficiency limitations, the actual output is mostly 50%-70% of the theoretical value. Professional athletes or manual laborers can achieve 25-30 Newton-meters through training, while specially trained individuals such as rock climbing enthusiasts can generate finger torque of up to 40 Newton-meters. Tools can significantly amplify torque output; for example, a regular wrench can multiply human force by 3-5 times, but sustained force application requires consideration of muscle fatigue. Daily operations like tightening screws or turning a steering wheel typically maintain torque within the range of 5-50 Newton-meters. Torque calculation follows the physical principle of force multiplied by lever arm, and in practical operations, attention should be paid to the influence of force application angle and joint range of motion on the final torque value.
Q
What is low RPM high torque?
Low RPM high torque refers to the characteristic of an engine that can deliver substantial torque within a relatively low RPM range (typically 1500-3000 rpm). This design significantly enhances a vehicle's launch acceleration and hill-climbing capability. When engine power remains constant, torque is inversely proportional to RPM. Consequently, generating high torque at low RPM enables the crankshaft to produce greater power per revolution, providing ample traction without requiring high engine speeds—particularly advantageous for urban stop-and-go driving or mountainous terrain. Turbocharged models often excel in this regard; for instance, certain popular local SUVs achieve peak torque at 1800 rpm, facilitating loaded hill ascents or overtaking maneuvers. By contrast, low-torque engines must rely on higher RPMs to compensate for power deficiency, resulting in increased fuel consumption and acceleration lag. Notably, the low-RPM high-torque characteristic also reduces shift frequency, minimizes mechanical wear, and improves driving smoothness—especially beneficial for drivers frequently encountering congested conditions. When evaluating this parameter during vehicle selection, prioritize models whose torque curve peaks earlier, typically indicated in specifications as "XX N·m @ 1500-4000 rpm."
Q
How much torque is 1800 RPM?
The torque value at 1800 RPM needs to be calculated in combination with engine power, and the specific numerical value depends on the power output at this rotational speed. According to the physical formula "Power = Torque × Rotational Speed ÷ 9550", when power is constant, torque is inversely proportional to rotational speed. This means that when the engine speed is 1800 RPM, if the vehicle is in a low-speed, high-load working condition (such as climbing a slope or starting with a heavy load), the torque output will be relatively high to provide sufficient traction; while during flat-road cruising, the torque at the same rotational speed may decrease moderately to optimize fuel efficiency. Turbocharged engines usually form a wide torque plateau in the range of 1500-4500 RPM, and 1800 RPM falls precisely within this range, delivering over 90% of the peak torque. For example, a 1.5T engine can generate approximately 250-300 Nm of torque at this rotational speed. In actual driving, by monitoring the tachometer and coordinating throttle control, the torque characteristics at this rotational speed can be effectively utilized to achieve smooth acceleration or overcome gradients. It should be noted that different engine calibrations will result in variations in torque curves, so it is recommended to consult the torque-speed curve diagram of the specific vehicle model to obtain accurate data.
Q
Why is it almost impossible to rev to 21000 RPM?
It is nearly impossible to increase the engine speed to 21,000 revolutions per minute, primarily constrained by the comprehensive limitations of material physical limits, mechanical structural strength, and engineering design. The inertial forces exerted on moving components within the engine, such as pistons and connecting rods, at ultra-high speeds would far exceed the tensile strength of metallic materials, resulting in component deformation or even fracture. Taking current mass-produced naturally aspirated engines as an example, the Lexus LFA's 9,000 revolutions per minute already approaches the acoustic and mechanical balance limits of naturally aspirated engines, while turbocharged engines like the Bugatti Veyron, which prioritize low-end torque output, typically limit the redline speed to approximately 6,400 revolutions per minute. Furthermore, emission regulations and noise standards further diminish the viability of ultra-high-speed engines, with modern technology favoring efficiency improvements through turbocharging or hybrid systems. Even for diesel engines, their compression ignition characteristics generally result in lower maximum speeds compared to gasoline engines, typically not exceeding 5,000 revolutions per minute. These technical challenges and safety considerations collectively determine that achieving 21,000 revolutions per minute remains within the theoretical realm under current engineering frameworks.
View More